Solve for indicated variable (h) : S=2(pi)r(squared) + 2(pi)rh

Sagot :

[tex]S=2\pi r^2+2\pi rh\\\\2\pi r^2+2\pi rh=S\ \ \ \ |subtract\ 2\pi r^2\ from\ both\ sides\\\\2\pi rh=S-2\pi r^2\ \ \ \ |divide\ both\ sides\ by\ 2\pi r\\\\\boxed{h=\frac{S-2\pi r^2}{2\pi r}}[/tex]
View image Аноним
S = 2πr² + 2πrh

[tex]h = \frac{S - 2 \pi r^{2} }{2 \pi r} [/tex]

[tex]h = \frac{S}{2 \pi r} - \frac{2 \pi r^{2} }{2 \pi r} [/tex]

[tex]h = \frac{S}{2 \pi r} - r[/tex]