[tex]\frac{tan^2x}{1+cot^2x}+\frac{cot^2x}{1+tan^2x}=sec^2x\ cosec^2x-3\\\\L=\frac{tan^2x(1+tan^2x)+cot^2x(1+cot^2x)}{(1+cot^2x)(1+tan^2x)}=\frac{tan^2x+tan^4x+cot^2x+cot^4x}{1+tan^2x+cot^2x+tanxcotx}\\\\=\frac{tan^2x+cot^2x+tan^4x+cot^4x}{1+tan^2x+cot^2x+1}=\frac{tan^2x+2+cot^2x+tan^4x-2+cot^4x}{tan^2x+cot^2x+2}[/tex]
[tex]=\frac{(tanx+cotx)^2+(tan^2x-cot^2x)^2}{(tanx+cotx)^2}=\frac{(tanx+cotx)^2}{(tanx+cotx)^2}+\frac{(tan^2x-cot^2x)^2}{(tanx+cotx)^2}\\\\=1+\frac{(tanx-cotx)^2(tanx+cotx)^2}{(tanx+cotx)^2}=1+(tanx-cotx)^2\\\\=1+tan^2x-2tanx\ cotx+cot^2x=tan^2x+cot^2x+1-2\\\\=\left(\frac{sinx}{cosx}\right)^2+\left(\frac{cosx}{sinx}\right)^2-1=\frac{sin^2x}{cos^2x}+\frac{cos^2x}{sin^2x}-1=\frac{sin^4x+cos^4x}{sin^2x\ cos^2x}-1[/tex]
[tex]=\frac{(sin^2x)^2+2sin^2x\ cos^2x+(cos^2x)^2-2sin^2x\ cos^2x}{sin^2x\ cos^2x}-1\\\\=\frac{(sin^2x+cos^2x)^2-2sin^2x\ cos^2x}{sin^2x\ cos^2x}-1=\frac{1^2-2sin^2x\ cos^2x}{sin^2x\ cos^2x}-1\\\\=\frac{1}{sin^2x\ cos^2x}-\frac{2sin^2x\ cos^2x}{sin^2x\ cos^2x}-1=\frac{1}{sin^2x}\cdot\frac{1}{cos^2x}-2-1\\\\=cosec^2x\cdot sec^2x-3=sec^2x\ cosec^2x-3=R[/tex]