How many sides does a polygon have if the sum of its angle measures is 2700 degrees and how do you find this?

Sagot :

The number of angles equal the number of sides


The number of angles calculate: (n-2)x180°

(n-2)x180°=2700°    |divide both sides by 180°

n-2=15    |add 2 to both siedes

n=13

Answer: 13 sides.


[tex]the\ sum\ of\ angle\ measures\ is\ 2700^0\\\\(n-2)\cdot180^0=2700^0\\n-the\ number\ of\ the\ sides\ of\ the\ polygon\\\\n-2= \frac{2700}{180} \ \ \ \Rightarrow\ \ \ n-2=15\ \ \ \Rightarrow\ \ \ n=17\\\\Ans.\ 17\ sides\ of\ the\ polygon.[/tex]