The sum of 3/4 and 18/19 is closest to 0, 1, 2



Sagot :

Answer: 2

Explanation:

In order to sum two rational numbers, we should find their lowest common denominator. In this case, the two fractions are

[tex]\frac{3}{4}[/tex]

[tex]\frac{18}{19}[/tex]

so, their lowest common denominator is [tex]4\cdot 19=76[/tex]. So, the sum of the two numbers becomes

[tex]\frac{3}{4}+\frac{18}{19}=\frac{3 \cdot 19+18\cdot 4}{76}=\frac{57+72}{76}=\frac{129}{76}=1.697..[/tex]

So, this number is closer to 2.


Answer:

1.69 it is closest to 2.

Step-by-step explanation:

Given : [tex]\frac{3}{4}[/tex] and  [tex]\frac{18}{19}[/tex]

To find  : Sum

Solution We have given that  [tex]\frac{3}{4}[/tex] and  [tex]\frac{18}{19}[/tex]

[tex]\frac{3}{4}[/tex] +  [tex]\frac{18}{19}[/tex]

Least common multiple of 4 and 19 is 76

So, [tex]\frac{3*19}{4 *19}[/tex] +  [tex]\frac{18 *4}{19*4}[/tex]

[tex]\frac{57}{76}[/tex] +  [tex]\frac{72}{76}[/tex]

Now , the denominator is equal then combine the fraction

[tex]\frac{57 + 72}{76}[/tex]

[tex]\frac{129}{76}[/tex]

Sum  = 1.69

Therefore, 1.69 it is closest to 2.