Sagot :
The formula for the volume of a sphere is [tex]\frac{4}3\pi r^3[/tex].
Our diameter is 10 inches. Since the radius is always half the diameter, the radius must be 5 inches. We can use this value to find the volume.
[tex]V=\frac{4}3\pi 5^3 \\\\ 5^3=5\times5\times5=125\\V=\frac{4}3\pi 125 \\\\ \frac{4}3\times125\approx166.667 \\ V\approx166.667\pi \\\\ \pi\approx3.14 \\ V\approx166.667\times3.14\approx\boxed{523.3\ in^3}[/tex]
Our diameter is 10 inches. Since the radius is always half the diameter, the radius must be 5 inches. We can use this value to find the volume.
[tex]V=\frac{4}3\pi 5^3 \\\\ 5^3=5\times5\times5=125\\V=\frac{4}3\pi 125 \\\\ \frac{4}3\times125\approx166.667 \\ V\approx166.667\pi \\\\ \pi\approx3.14 \\ V\approx166.667\times3.14\approx\boxed{523.3\ in^3}[/tex]
Answer:
Volume of sphere(V) is given by:
[tex]V =\frac{4}{3} \pi r^3[/tex] ....[1]
where
r is the radius of the sphere.
As per the statement:
The diameter of a beach ball is 10 inches.
We know that:
[tex]\text{Diameter}(d) = 2r[/tex]
[tex]10 = 2r[/tex]
Divide both sides by 2 we get;
[tex]5 = r[/tex]
or
r = 5 inches
Substitute in [1] we get;
[tex]V =\frac{4}{3} \pi 5^3[/tex]
Use [tex]\pi = 3.14[/tex]
then;
[tex]V = \frac{4}{3} \cdot 3.14 \cdot 125[/tex]
Simplify:
⇒ V = 523.333332 cubic inches
Therefore, the volume of beach ball to the nearest tenth of a cubic is, 523.3 cubic inches