Which inequality represents all the values of x for which the quotient below is defined?
√8x^2 divided by √2x
a.x>(or equal to)0
b.x>1
c.x>-1
d.x>0


Sagot :

So that the ratio is defined:

* The
denominator can not be zero
* Being an integer index pair, the filing must be greater or equal to zero.

It is concluded that:


x ≠ 0  ∧  2x ≥  0   
                x ≥0

.:.  x > 0     

R/ alternative d) x>0


Jeizon1L :)

[tex] \sqrt{\frac{8x^{2}}{2x}} = \frac{\sqrt{8x^{2}}}{\sqrt{2x}} = \frac{\sqrt{4 * x^{2} * 2}}{\sqrt{2x}} = \frac{ \sqrt{4}\sqrt{x^{2}} \sqrt{2}}{\sqrt{2x}} = \frac{2x\sqrt{2}}{\sqrt{2x}} = \frac{2x}{\sqrt{x}} = 2\sqrt{x} [/tex]

The answer is D, x > 0.