Sagot :
Question: Simplify [tex]\frac{\sqrt{8x^2}}{\sqrt{2x}}[/tex].
First off, you never want square roots on the bottom of a fraction, so let's multiply both sides by [tex]\sqrt{2x}[/tex] to get rid of it. All we have to do from there is simplify!
[tex]\frac{\sqrt{8x^2}}{\sqrt{2x}}*\frac{\sqrt{2x}}{\sqrt{2x}}=\frac{\sqrt{8x^2}*\sqrt{2x}}{2x}}=\frac{\sqrt{16x^3}}{2x}=\frac{4x\sqrt{x}}{2x}=\boxed{2\sqrt{x}}[/tex]
First off, you never want square roots on the bottom of a fraction, so let's multiply both sides by [tex]\sqrt{2x}[/tex] to get rid of it. All we have to do from there is simplify!
[tex]\frac{\sqrt{8x^2}}{\sqrt{2x}}*\frac{\sqrt{2x}}{\sqrt{2x}}=\frac{\sqrt{8x^2}*\sqrt{2x}}{2x}}=\frac{\sqrt{16x^3}}{2x}=\frac{4x\sqrt{x}}{2x}=\boxed{2\sqrt{x}}[/tex]
[tex] \sqrt{\frac{8x^{2}}{2x}} = \frac{\sqrt{8x^{2}}}{\sqrt{2x}} = \frac{\sqrt{4}\sqrt{x^{2}}\sqrt{2}}{\sqrt{2x}} = \frac{2x\sqrt{2}}{\sqrt{2x}} = \frac{2x}{\sqrt{x}} = 2\sqrt{x} [/tex]