Sagot :
[tex]y=a(x-h)^2+k\\
\text{vertex}=(h,k)[/tex]
[tex]g(x)=2x^2-8x+6\\ g(x)=2(x^2-4x+3)\\ g(x)=2(x^2-4x+4-1)\\ g(x)=2(x-2)^2-2\\\text{vertex}=(2,-2)[/tex]
The range of a quadratic function is:
[tex]y\in(-\infty,k]\text{ for } a<0\\ y\in[k,\infty)\text{ for } a>0\\[/tex]
So the range of [tex]g(x)[/tex] is [tex]y\in[-2,\infty)[/tex].
x-intercepts:
[tex]2(x-2)^2-2=0\\ 2(x-2)^2=2\\ (x-2)^2=1\\ x-2=1 \vee x-2=-1\\ x=3 \vee x=1 [/tex]
y-intercepts:
[tex]y=2(0-2)^2-2\\ y=2\cdot4-2\\ y=6[/tex]
[tex]g(x)=2x^2-8x+6\\ g(x)=2(x^2-4x+3)\\ g(x)=2(x^2-4x+4-1)\\ g(x)=2(x-2)^2-2\\\text{vertex}=(2,-2)[/tex]
The range of a quadratic function is:
[tex]y\in(-\infty,k]\text{ for } a<0\\ y\in[k,\infty)\text{ for } a>0\\[/tex]
So the range of [tex]g(x)[/tex] is [tex]y\in[-2,\infty)[/tex].
x-intercepts:
[tex]2(x-2)^2-2=0\\ 2(x-2)^2=2\\ (x-2)^2=1\\ x-2=1 \vee x-2=-1\\ x=3 \vee x=1 [/tex]
y-intercepts:
[tex]y=2(0-2)^2-2\\ y=2\cdot4-2\\ y=6[/tex]
First write g(x)=2x²-8x+6 as 2(x-2)²-2
g(x)=2(x-2)²-2
We can say that (x-2)² is always positive and y must has a min. value in vertex.
y=2(x-2)²-2
(x-2)² min value is 0 so x=2
y=-2
Thus its vertex is (2,-2)
For its range
(x-2)² always positive so (x-2)²=0 and x=2 and y=-2 so we can say that it goes ∞ and it end -2.
It's range (-2,∞).Because its vertex point is(2,-2)
Intercepts:
For y intercepts ,x=0
y=6
For x intercepts,y=0
0=2(x-2)²-2
1=(x-2)²
x-2=1 or x-2=-1
x=3 or x=1
g(x)=2(x-2)²-2
We can say that (x-2)² is always positive and y must has a min. value in vertex.
y=2(x-2)²-2
(x-2)² min value is 0 so x=2
y=-2
Thus its vertex is (2,-2)
For its range
(x-2)² always positive so (x-2)²=0 and x=2 and y=-2 so we can say that it goes ∞ and it end -2.
It's range (-2,∞).Because its vertex point is(2,-2)
Intercepts:
For y intercepts ,x=0
y=6
For x intercepts,y=0
0=2(x-2)²-2
1=(x-2)²
x-2=1 or x-2=-1
x=3 or x=1