Sagot :
[tex]\frac{11}{20} =\frac{11 \times 9}{20 \times 9}=\frac{99}{180} \\ \\
\frac{5}{9}=\frac{5 \times 20}{9 \times 20}=\frac{100}{180} \\ \\
99<100 \Rightarrow \frac{99}{180}<\frac{100}{180} \Rightarrow \boxed{\frac{11}{20} < \frac{5}{9}} \Leftarrow \hbox{answer A}[/tex]
Answer:
[tex]\dfrac{11}{20}<\dfrac{5}{9}[/tex]
A is correct.
Step-by-step explanation:
Given: [tex]\dfrac{11}{20}\text{ and }\dfrac{5}{9}[/tex]
We need to compare the two fraction.
We can compare either greater , less or equal.
If we compare two fraction. First we make their denominator same.
Denominators are 20 and 9
We will find the LCD of 20 and 9
20 = 2 x 2 x 5
9 = 3 x 3
LCD = 2 x 2 x 3 x 3 x 5 = 180
[tex]\text{First Fraction}\rightarrow \dfrac{11\times 9}{20\times 9}\Rightarrow \dfrac{99}{180}[/tex]
[tex]\text{Second Fraction}\rightarrow \dfrac{5\times 20}{9\times 20}\Rightarrow \dfrac{100}{180}[/tex]
Now, we can see their denominator are same.
We will compare the numerator.
99<100
Thus,
[tex]\dfrac{99}{180}<\dfrac{100}{180}[/tex]
[tex]\dfrac{11}{20}<\dfrac{5}{9}[/tex]
Hence, [tex]\dfrac{11}{20}<\dfrac{5}{9}[/tex] correct.