Sagot :
Answer:
x - 2 [tex]\frac{3}{4}[/tex] = 13 [tex]\frac{1}{4}[/tex]
x = 16
Step-by-step explanation:
x - 2 [tex]\frac{3}{4}[/tex] = 13 [tex]\frac{1}{4}[/tex]
x - [tex]\frac{11}{4}[/tex] = [tex]\frac{53}{4}[/tex] Add [tex]\frac{11}{4}[/tex] to both sides
x = [tex]\frac{53}{4}[/tex] + [tex]\frac{11}{4}[/tex]
x = [tex]\frac{64}{4}[/tex]
x = 16
Answer:
[tex]x-2 \frac{3}{4}=13 \frac{1}{4}[/tex]
(where x is the original length of the pipe).
Original length of the pipe = 16 feet
Step-by-step explanation:
Let x be the original length of the pipe.
Given a plumber cuts 2 3/4 feet from a pipe and now has a pipe that is 13 1/4 feet long, the equation that models this is:
[tex]\boxed{ x-2 \frac{3}{4}=13 \frac{1}{4}}[/tex]
To determine the length of the original pipe, solve the equation for x.
Add 2 3/4 to both sides of the equation:
[tex]\implies x-2 \frac{3}{4}+2 \frac{3}{4}=13 \frac{1}{4}}+2 \frac{3}{4}[/tex]
[tex]\implies x=13 \frac{1}{4}}+2 \frac{3}{4}[/tex]
When adding mixed numbers, partition the mixed numbers into fractions and whole numbers, and add them separately:
[tex]\implies x=13 +\dfrac{1}{4}}+2 +\dfrac{3}{4}[/tex]
[tex]\implies x=13 +2 +\dfrac{1}{4}}+\dfrac{3}{4}[/tex]
[tex]\implies x=15 +\dfrac{1+3}{4}[/tex]
[tex]\implies x=15 +\dfrac{4}{4}[/tex]
[tex]\implies x=15 +1[/tex]
[tex]\implies x=16[/tex]
Therefore, the original length of the pipe was 16 feet.