Find the general solution of the differential equation and check the result by differentiation. dy/dx = x^(3/2)

Sagot :

Given:

[tex]\frac{dy}{dx}=x^{\frac{3}{2}}[/tex]

To find the general solution:

It can be written as,

[tex]dy=x^{\frac{3}{2}}dx[/tex]

Taking integration on both sides we get,

[tex]\begin{gathered} \int dy=\int x^{\frac{3}{2}}dx \\ y=\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}+c \\ y=\frac{x^{\frac{5}{2}}}{\frac{5}{2}}+c \\ y=\frac{2}{5}x^{\frac{5}{2}}+c \end{gathered}[/tex]

Hence, the general solution is,

[tex]y=\frac{2}{5}x^{\frac{5}{2}}+c[/tex]

To check the result by differentiation:

Differentiating with respect to x we get,

[tex]\begin{gathered} \frac{dy}{dx}=\frac{2}{5}(\frac{5}{2})x^{\frac{5.}{2}-1}+0 \\ \frac{dy}{dx}=x^{\frac{3}{2}} \end{gathered}[/tex]

Hence, it is verified.