In order for the two figures shown below to be similar, the length of the unknown side must be . If necessary, round your answer to the nearest tenth 12 8 4 2 5 15

Sagot :

From the properties of similar triangles:

The ratio of corresponding sides of similar triangle are always equal

In the given triangle :

The corresponding sides ratio is:

[tex]\frac{12}{4}=\frac{8}{?}=\frac{15}{5}[/tex]

Simplify the above expression and solve for "?"

[tex]\begin{gathered} \frac{12}{4}=\frac{8}{?}=\frac{15}{5} \\ \frac{8}{?}=\frac{15}{5} \\ \text{Apply crossmultiplication:} \\ 8\times5=?\times15 \\ \text{? = }\frac{8\times5}{15} \\ \text{? = }2.66 \end{gathered}[/tex]

So, ? = 2.66

Answer : 2.66