Answer:
-64x^12
Explanation:
Given the expression
m = -4x^4
You are to look for m^3 as shown;
[tex]\begin{gathered} m=-4x^4 \\ m^3\text{ = (-4x}^4\text{)}^3 \\ m^3=(-4)^3\times(x^4)^3 \end{gathered}[/tex]Open the bracket:
[tex]\begin{gathered} (-4)^3\text{ }\times(x^4)^3\text{ = (-4}\times-4\times-4\text{)}\times x^{^{12}} \\ (-4)^3\text{ }\times(x^4)^3\text{ = (16}\times-4\text{)}\times x^{^{12}} \\ (-4)^3\text{ }\times(x^4)^3=-64x^{12} \end{gathered}[/tex]THe correct answer is -64x^12