Mass of the object, m= 0.9 kg and radius of the circular path, r = 6 m and time, T = 2 seconds.
Here, the velocity will be
[tex]\begin{gathered} v=\frac{dis\tan ce}{time} \\ =\frac{2\pi r}{T} \end{gathered}[/tex]The force required to sustain this motion is
[tex]F=\frac{mv^2}{r}[/tex]Substituting the value of velocity, we get
[tex]\begin{gathered} F=\frac{m(2\pi r)^2}{rT^2} \\ =\frac{4m\pi^2r}{T^2} \\ =\frac{4\times0.9\times10\times6}{2^2} \\ =54\text{ N} \end{gathered}[/tex]