The standard form of the equation of a parabola isy=x²-4x+21. What is the vertex form of the equation?O A. y = ¹/(x-4)² +13OB. y=(x-4)² +21C. y = 1/(x+4)² +1+13O D. y = 1/(x+4)² +21

The Standard Form Of The Equation Of A Parabola Isyx4x21 What Is The Vertex Form Of The EquationO A Y X4 13OB Yx4 21C Y 1x4 113O D Y 1x4 21 class=

Sagot :

Answer:

[tex]y=\frac{1}{2}(x-4)^2+13\text{ }\operatorname{\Rightarrow}(A)[/tex]

Explanation: We have to find the vertex form of the parabola equation from the given standard form of it:

[tex]y=\frac{1}{2}x^2-4x+21\rightarrow(1)[/tex]

The general form of the vertex parabola equation is as follows:

[tex]\begin{gathered} y=A(x-h)^2+k\rightarrow(2) \\ \\ \text{ Where:} \\ \\ (h,k)\rightarrow(x,y)\Rightarrow\text{ The Vertex} \end{gathered}[/tex]

Comparing the equation (2) with the original equation (1) by looking at the graph of (1) gives the following:

[tex](h,k)=(x,y)=(-4,13)[/tex]

Therefore the vertex form of the equation is as follows:

[tex]y=\frac{1}{2}(x-4)^2+13\Rightarrow(A)[/tex]

Therefore the answer is Option(A).

View image AiyanahR619924