[tex]\log_a (b \times c)=\log_a b + \log_a c \\ \log_a (\frac{b}{c})=\log_a b-\log_a c \\ \log_a b^c=c \log_a b \\ \\ 1. \\ \ln 6=\ln (2 \times 3)=\boxed{\ln 2 + \ln 3} \approx 0.693+1.099=\boxed{1.792} \\ \\ 2. \\ \ln (\frac{10}{3})=\ln (\frac{2 \times 5}{3})=\boxed{\ln 2 + \ln 5 - \ln 3} \approx 0.693+1.609-1.099=\boxed{1.203} \\ \\ 3. \\ \ln 30=\ln (2 \times 3 \times 5)=\boxed{\ln 2+ \ln 3 + \ln 5} \approx 0.693+ 1.099 + 1.609=\\=\boxed{3.401}[/tex]
[tex]4. \\
\ln 12=\ln (2^2 \times 3)=\ln 2^2 + \ln 3=\boxed{2 \ln 2+ \ln 3} \approx 2 \times 0.693+ 1.099= \\
=\boxed{2.485} \\ \\
5. \\
\ln (\frac{2}{5})=\boxed{\ln 2 - \ln 5} \approx 0.693-1.609=\boxed{-0.916} \\ \\
6. \\
\ln (\frac{5}{6})=\ln (\frac{5}{2 \times 3})=\ln 5-(\ln 2+ \ln 3)=\boxed{\ln 5 - \ln 2 - \ln 3} \approx \\
\approx1.609-0.693-1.099=\boxed{-0.183}[/tex]