Sagot :
[tex]\huge\underline{\underline{\boxed{\mathbb {SOLUTION:}}}}[/tex]
We would calculate the magnitude by applying pythagorean theorem:
[tex]\longrightarrow \sf{Magnitude= \sqrt{(-14)^2 } + 30^2}[/tex]
[tex]\longrightarrow \sf{Magnitude = 33.12}[/tex]
[tex]\longrightarrow \sf{The \: vector \: is \: (- 14, 30)}[/tex]
The angle between two vectors is given by the formula:
[tex]\sf{\longrightarrow \small \cos \emptyset = \dfrac{(a1b1 + a2b2)}{ \sqrt{(a1)^2 + (a2)^2√(b1)^2 + (b2)^2} } }[/tex]
In two dimensional, the x axis of vector form is:
[tex]\small\sf{\longrightarrow (b1, b2) = (1, 0) }[/tex]
[tex]\sf{\longrightarrow \small \cos \: \emptyset = \dfrac{(14 * 1 + 30 x 0)}{( \sqrt{(-14)^2 + (30)^2)(√(1)^2 + (0)^2)} } }[/tex]
[tex]\small\longrightarrow \sf{ \dfrac{14}{33.12} }[/tex]
[tex]\small\longrightarrow \sf{\emptyset \: = arcCos (\dfrac{ - 14}{33.12} )}[/tex]
[tex]\small\longrightarrow \sf{\emptyset= 115^\circ}[/tex]
[tex]\huge\underline{\underline{\boxed{\mathbb {ANSWER:}}}}[/tex]
[tex] \small\bm{The \: angle \: between \: the \: vector \: }[/tex]
[tex]\small\bm{and \: \: the \: \: positive \: \: x \: \: axis \: \: is \: \: \: 115^\circ .}[/tex]