The volume of the tank is (70 cm)³ = 343,000 cm³.
Now,
1 mL = 1 cm³
1 L = 1000 mL
so we convert the given rate to
[tex]\dfrac{7\,\rm L}{1\,\rm min} \cdot \dfrac{1000\,\rm mL}{1\,\rm L} \cdot \dfrac{1\,\mathrm{cm}^3}{1\,\rm mL} = \dfrac{7000\,\mathrm{cm}^3}{1\,\rm min}[/tex]
Then the time it will take to fill up the tank is
[tex]343,000\,\mathrm{cm}^3 \cdot \dfrac{1\,\rm min}{7000\,\mathrm{cm}^3} = \boxed{49\,\rm min}[/tex]