Sagot :
The complete question is:
Create a matrix for this linear system:
what is the solution of the system?
[tex]$\left[\begin{array}{rrr}1 & -1 & -2 \\ 2 & 3 & -1\end{array}\right] c=\left[\begin{array}{r}1 \\ -2\end{array}\right]$[/tex]
The solution straight from the matrix as
[tex]${data-answer}amp;x=\frac{1}{5}+\frac{7}{5} r \\[/tex]
[tex]${data-answer}amp;y=-\frac{4}{5}-\frac{3}{5} r \\[/tex]
and z = r
What is the solution of the system?
A solution to a system of equations exists a set of values for the variable that satisfy all the equations simultaneously.
Given:
[tex]$\left[\begin{array}{rrr}1 & -1 & -2 \\ 2 & 3 & -1\end{array}\right] c=\left[\begin{array}{r}1 \\ -2\end{array}\right]$[/tex]
By applying two more row operations, we get
[tex]${data-answer}amp;{\left[\begin{array}{rrr|r}1 & -1 & -2 & 1 \\2 & 3 & -1 & -2\end{array}\right] R_{2}+(-2) R_{1} \rightarrow R_{2}} \\[/tex]
[tex]&\equiv\left[\begin{array}{rrr|r}1 & -1 & -2 & 1 \\0 & 5 & 3 & -4\end{array}\right] \frac{1}{5} R_{2} \rightarrow R_{2} \\[/tex]
simplifying the above matrix, we get
[tex]&\equiv\left[\begin{array}{rrr|r}1 & -1 & -2 & 1 \\0 & 1 & \frac{3}{5} & -\frac{4}{5}\end{array}\right] R_{1}+R_{2} \rightarrow R_{1} \\[/tex]
[tex]${data-answer}amp;\equiv\left[\begin{array}{rrr|r}1 & 0 & -\frac{7}{5} & \frac{1}{5} \\0 & 1 & \frac{3}{5} & -\frac{4}{5}\end{array}\right]$[/tex]
The solution straight from the matrix as
[tex]${data-answer}amp;x=\frac{1}{5}+\frac{7}{5} r \\[/tex]
[tex]${data-answer}amp;y=-\frac{4}{5}-\frac{3}{5} r \\[/tex] and
z = r
To learn more about matrix refer to:
brainly.com/question/24511230
#SPJ4