Sagot :
Answer:
[tex]\sf 28 \frac{1}{3} \:ft=28.3\:ft\:(nearest\:tenth)[/tex]
Step-by-step explanation:
Given information:
- It takes Mr Kelly 6 strides to walk 20 ft.
- It takes Mr Kelly 8.5 strides to walk the other side of his house.
Let x be the unknown length of the other side of Mr Kelly's house.
To solve, set up a ratio with the given information and the defined unknown, then solve for x:
[tex]\textsf{20 ft : 6 strides = x ft : 8.5 strides}[/tex]
[tex]\implies \sf 20:6 = x:8.5[/tex]
[tex]\implies \sf \dfrac{20}{6}=\dfrac{x}{8.5}[/tex]
[tex]\implies \sf x=\dfrac{20 \cdot 8.5}{6}[/tex]
[tex]\implies \sf x=\dfrac{170}{6}[/tex]
[tex]\implies \sf x=28 \frac{1}{3} \:ft[/tex]
[tex]\implies \sf x=28.3\:ft\:(nearest\:tenth)[/tex]
Therefore, the length of the other side of Mr Kelly's house that takes him 8.5 strides to walk is 28.3 ft (nearest tenth).
Let that be x
- 20:x=6:8.5
- 20/x=6/8.5
- 20/x=12/17
- 12x=17(20)
- 12x=340
- x=340/12
- x=28.3ft