The Mean Absolute Deviation of Set 1 exists 13 more than the mean absolute deviation of Set 2.
Set 1: 12, 8, 10, 50
Set 2: 13, 9,8
To determine the mean for each set
Mean = totality of elements/number of elements
Mean of Set 1:
[tex]$=\frac{12+8+10+50}{4}[/tex]
[tex]$=\frac{80}{4}=20$[/tex]
Mean of Set 2:
[tex]$=\frac{13+9+8}{3}[/tex]
[tex]$=\frac{30}{3}=10$[/tex]
To determine the mean absolute deviation (MAD) of the data in each set.
M.A.D of Set 1:
[tex]$=\frac{|12-20|+|8-20|+|10-20|+|50-20|}{4}[/tex]
[tex]$=\frac{8+12+10+30}{4}=\frac{60}{4}=15$[/tex]
M.A.D of Set 2:
[tex]$=\frac{|13-10|+|9-10|+|8-10|}{3}[/tex]
[tex]$=\frac{3+1+2}{3}=\frac{6}{3}=2$[/tex]
The Mean Absolute Deviation of Set 1 exists 13 more than the mean absolute deviation of Set 2.
To learn more about Mean Absolute Deviation refer to:
https://brainly.com/question/447169
#SPJ4