A basket contains 3 oranges and 3 mangoes. A playful baby picks two fruits at random from this basket. If X denotes the number of oranges thus picked, determine the probability distribution of X

Sagot :

There are [tex]\binom62=15[/tex] ways of selecting any two fruit from the basket, where

[tex]\dbinom nk = \dfrac{n!}{k!(n-k)!}[/tex]

is the so-called binomial coefficient.

If the baby picks out [tex]k[/tex] oranges, where [tex]k\in\{0,1,2\}[/tex], it can do so in

[tex]\dbinom 3k \dbinom3{2-k} = \dfrac{3!}{k!} \dfrac{3!}{(2-k)! (1 + k)!}[/tex]

ways.

Then the PMF (probability mass function) of [tex]X[/tex] is

[tex]P(X=x) = \begin{cases} \dfrac{\binom30 \binom32}{\binom62} = \dfrac3{15} & \text{if }x=0 \\\\ \dfrac{\binom31 \binom31}{\binom62} = \dfrac9{15} & \text{if }x = 1 \\\\ \dfrac{\binom32 \binom30}{\binom62} = \dfrac3{15} & \text{if }x=2 \\\\ 0 &\text{otherwise}\end{cases}[/tex]