Sagot :
So mass of sulphur
[tex]\\ \rm\Rrightarrow 0.02\times 757\times 10^{6}[/tex]
[tex]\\ \rm\Rrightarrow 1514\times 10^4[/tex]
- S+O_2–≥SO_2
Moles =64/32=2
So
So tons of sulphur dioxide
[tex]\\ \rm\Rrightarrow 2(1516)10^4[/tex]
[tex]\\ \rm\Rrightarrow 3032\times 10^4ton[/tex]
Explanation:
2% of 2million tons of sulphur=
2÷100×7.57E9
That is;
[tex] \frac{2}{100} \times 7.57 \times 10 {}^{6} = 0.02 \times 7.57 \times 10 {}^{6} \\ = 2 \times 10 {}^{ - 2} \times7.57 \times 10 {}^{6} = 2 \times 7.57(10 {}^{ - 2 + 6}) \\ = 15.14 \times 10 {}^{4} (for \: sulphur) \\ for \: sulphur \: dioxide = so2 \\ the \: molar \: mass \: of \: so2 = 64g.mol {}^{ -1} \\ if \: 32grams \: of \: sulphur \: weighs \: 15.14 \times 10 {}^{4} tones \\ 64grams \: will \: weigh \: \frac{64}{32} \times 15.14 \times 10 {}^{4} \\ = 2 \times 15.14 \times 10 {}^{4} \\ = 30.28 \times 10 {}^{4} \\ or = 3.028 \times 10 {}^{5} tones[/tex]