Sagot :
The complex number -7i into trigonometric form is 7 (cos (90) + sin (90) i) and 3 + 3i in trigonometric form is 4.2426 (cos (45) + sin (45) i)
What is a complex number?
It is defined as the number which can be written as x+iy where x is the real number or real part of the complex number and y is the imaginary part of the complex number and i is the iota which is nothing but a square root of -1.
We have a complex number shown in the picture:
-7i(3 + 3i)
= -7i
In trigonometric form:
z = 7 (cos (90) + sin (90) i)
= 3 + 3i
z = 4.2426 (cos (45) + sin (45) i)
[tex]\rm 7\:\left(cos\:\left(90\right)\:+\:sin\:\left(90\right)\:i\right)4.2426\:\left(cos\:\left(45\right)\:+\:sin\:\left(45\right)\:i\right)[/tex]
[tex]\rm =7\left(\cos \left(\dfrac{\pi }{2}\right)+\sin \left(\dfrac{\pi }{2}\right)i\right)\cdot \:4.2426\left(\cos \left(\dfrac{\pi }{4}\right)+\sin \left(\dfrac{\pi }{4}\right)i\right)[/tex]
[tex]\rm 7\cdot \dfrac{21213}{5000}e^{i\dfrac{\pi }{2}}e^{i\dfrac{\pi }{4}}[/tex]
[tex]\rm =\dfrac{148491\left(-1\right)^{\dfrac{3}{4}}}{5000}[/tex]
=21-21i
After converting into the exponential form:
[tex]\rm =\dfrac{148491\left(-1\right)^{\dfrac{3}{4}}}{5000}[/tex]
From part (b) and part (c) both results are the same.
Thus, the complex number -7i into trigonometric form is 7 (cos (90) + sin (90) i) and 3 + 3i in trigonometric form is 4.2426 (cos (45) + sin (45) i)
Learn more about the complex number here:
brainly.com/question/10251853
#SPJ1