Find the derivative of y = x^3/2.
Find the derivative of y = 1/x^3.
Find the derivative of y = 1/√x.


Sagot :

[tex]\quad \huge \quad \quad \boxed{ \tt \:Answer }[/tex]

[tex]\qquad \tt \rightarrow \:y = \cfrac{d}{dx} ( {x}^{ \frac{3}{2} } )= \dfrac{3}{2} \sqrt{x} [/tex]

[tex]\qquad \tt \rightarrow \:y = \cfrac{d}{dx} \bigg( \cfrac{1}{ {x}^{3} } \bigg)= \cfrac{- 3}{ {x}^{4} } [/tex]

[tex]\qquad \tt \rightarrow \:y = \cfrac{d}{dx} \bigg( \cfrac{1}{ \sqrt{x}^{} } \bigg)= \cfrac{ - 1}{ 2\sqrt{{x}^{ { 3}{} } }} [/tex]

____________________________________

[tex] \large \tt Solution \: : [/tex]

properties to be used here :

[tex]\qquad \tt \rightarrow \:\cfrac{d}{dx}( {x}^{ n } ) = n \sdot{x}^{n - 1} [/tex]

[tex]\large \textsf{Question : 1} [/tex]

[tex]\qquad \tt \rightarrow \:y = \cfrac{d}{dx} ( {x}^{ \frac{3}{2} } )[/tex]

[tex]\qquad \tt \rightarrow \:y = \dfrac{3}{2} x { }^{ \frac{3}{2} - 1 } [/tex]

[tex]\qquad \tt \rightarrow \:y = \dfrac{3}{2} x { }^{ \frac{3 - 2}{2} } [/tex]

[tex]\qquad \tt \rightarrow \:y = \dfrac{3}{2} x { }^{ \frac{1}{2} } [/tex]

[tex]\qquad \tt \rightarrow \:y = \dfrac{3}{2} \sqrt{x} [/tex]

[tex]\large \textsf{Question : 2} [/tex]

[tex]\qquad \tt \rightarrow \:y = \cfrac{d}{dx} \bigg( \cfrac{1}{ {x}^{3} } \bigg)[/tex]

[tex]\qquad \tt \rightarrow \:y = \cfrac{d}{dx} ({ {x}^{ - 3} } )[/tex]

[tex]\qquad \tt \rightarrow \:y = - 3 { {x}^{ - 3 - 1} } [/tex]

[tex]\qquad \tt \rightarrow \:y = - 3 { {x}^{ - 4} } [/tex]

[tex]\qquad \tt \rightarrow \:y = \cfrac{- 3}{ {x}^{4} } [/tex]

[tex]\large \textsf{Question : 3} [/tex]

[tex]\qquad \tt \rightarrow \:y = \cfrac{d}{dx} \bigg( \cfrac{1}{ \sqrt{x}^{} } \bigg)[/tex]

[tex]\qquad \tt \rightarrow \:y = \cfrac{d}{dx} \bigg( \cfrac{1}{{x}^{ \frac{1}{2} } } \bigg)[/tex]

[tex]\qquad \tt \rightarrow \:y = \cfrac{d}{dx} ({ {x}^{ - \frac{1}{2} } } )[/tex]

[tex]\qquad \tt \rightarrow \:y = -\cfrac{1}{2} { {x}^{ - \frac{1}{2} - 1} } [/tex]

[tex]\qquad \tt \rightarrow \:y = -\cfrac{1}{2} { {x}^{ \frac{ - 1 - 2}{2} } } [/tex]

[tex]\qquad \tt \rightarrow \:y = -\cfrac{1}{2} { {x}^{ \frac{ - 3}{2} } } [/tex]

[tex]\qquad \tt \rightarrow \:y = \cfrac{ - 1}{ 2{x}^{ \frac{ 3}{2} } } [/tex]

[tex]\qquad \tt \rightarrow \:y = \cfrac{ - 1}{ 2\sqrt{{x}^{ { 3}{} } }} [/tex]

Answered by : ❝ AǫᴜᴀWɪᴢ ❞