write the slope-intercept form of the equation of a line passing through the following two points: (-3, 7) & (6, -5)

Sagot :

Answer:  [tex]y = -\dfrac{4}{3} x +3[/tex]

In order to find equation, first find slope:

[tex]\sf slope : \dfrac{y_2 - y_1}{x_2 - x_1} \quad where \ (x_1, y_1) , \ (x_2, y_2) \ are \ points[/tex]

Given points: (-3, 7) and (6, -5)

[tex]\rightarrow \sf slope : \dfrac{-5-7}{6-(-3)} =-\dfrac{4}{3}[/tex]

Equation:

[tex]\sf y- y_1 = m(x - x_1)[/tex]

insert values

[tex]\rightarrow \sf y - 7 = -\dfrac{4}{3} (x -(-3))[/tex]

[tex]\rightarrow \sf y = -\dfrac{4}{3} x - 4 +7[/tex]

[tex]\rightarrow \sf y = -\dfrac{4}{3} x +3[/tex]