Sagot :
Answer:
[tex]x = -3~\text{and}~ x = -\dfrac 35[/tex]
Step-by-step explanation:
[tex]~~~~~~5x^2 +18x +9=0\\\\\implies 5x^2 +15x +3x +9 = 0\\\\\implies 5x(x+3) +3(x+3) = 0\\\\\implies (x+3)(5x+3) = 0\\\\\implies x = -3,~ x = -\dfrac 35[/tex]
Answer:
x = -3
OR
x = -(3/5)
Step by step explanation:
Given:
- 5x^2+18x+9=0
To Find:
- x
Soln:
Use quadratic formulae:
- Here I typed Quadratic formula as x
[tex] \rm x=\cfrac{-b\pm\sqrt{b^2-4ac}}{2}[/tex]
According to the question,on the formula,
- a = 5
- b = 18
- c = 9
So substitute them on the formula:
THEN solve for x.
[tex] \rm \implies \: x = \cfrac{-1 8 \pm \sqrt{18 {}^{2} - 4(5 \times 9) }}{2 \times 5} [/tex]
[tex] \rm \implies \: x = \cfrac{-1 8 \pm \sqrt{324- 20 \times 9) }}{10} [/tex]
[tex]\rm \implies \: x = \cfrac{-1 8 \pm \sqrt{324- 180}}{10} [/tex]
[tex] \rm \implies \: x = \cfrac{ - 18 \pm \sqrt{144} }{10} [/tex]
[tex] \rm \implies \: x = \cfrac{ - 18 \pm12}{10}[/tex]
[tex] \rm \implies \: x = \cfrac{9 \pm 6}{5} [/tex]
Final solution will after adding first(9+6),then secondly subtracting both 9-6
[tex] \rm \implies \boxed{x = - \cfrac{3 }{5} }[/tex]
[tex] \implies \boxed{\rm x = - 3}[/tex]
So there'll be two possible answers.