Sagot :
Answer:
[tex]\textsf{Volume}=\sf \dfrac{175}{3} \pi \:yd^3[/tex]
Step-by-step explanation:
[tex]\textsf{Volume of a cone}=\sf \dfrac{1}{3} \pi r^2 h \quad\textsf{(where r is the radius and h is the height)}[/tex]
Given:
- radius (r) = 5 yd
- height (h) = 7 yd
Substituting the given value into the formula:
[tex]\begin{aligned}\implies\textsf{Volume} &=\sf \dfrac{1}{3} \pi (5^2)(7)\\\\&=\sf \dfrac{1}{3} \pi (25)(7)\\ \\&=\sf \dfrac{1}{3} \pi (175)\\ \\&=\sf \dfrac{175}{3} \pi \:yd^3\\\\\end{aligned}[/tex]
Answer:
To find :-
The volume of cone
Given :-
radius (r) = 5 yd
height (h) = 7 yd
Solution :-
The volume of cone
[tex] = \frac{1}{3} \pi {r}^{2} h[/tex]
Substituting the value of 'r' and 'h' in the formula.
[tex] = \frac{1}{3} \times \frac{22}{7} \times {5}^{2} \times 7 \\ = \frac{1}{3} \times 22 \times 5 \times 5 \\ = \frac{550}{3} {yd}^{3} [/tex]
Result :-
[tex] \text {The volume of cone is} \frac{550}{3} {yd}^{3} [/tex].
[tex] \mathcal {BE \: \: BRAINLY} [/tex]