Find the volume of a
cone with a base radius of 5 yd and a height of 7 yd.
Write the exact volume in terms of Tt, and be sure to include the correct unit in your answer.


Sagot :

Answer:

[tex]\textsf{Volume}=\sf \dfrac{175}{3} \pi \:yd^3[/tex]

Step-by-step explanation:

[tex]\textsf{Volume of a cone}=\sf \dfrac{1}{3} \pi r^2 h \quad\textsf{(where r is the radius and h is the height)}[/tex]

Given:

  • radius (r) = 5 yd
  • height (h) = 7 yd

Substituting the given value into the formula:

[tex]\begin{aligned}\implies\textsf{Volume} &=\sf \dfrac{1}{3} \pi (5^2)(7)\\\\&=\sf \dfrac{1}{3} \pi (25)(7)\\ \\&=\sf \dfrac{1}{3} \pi (175)\\ \\&=\sf \dfrac{175}{3} \pi \:yd^3\\\\\end{aligned}[/tex]

Answer:

To find :-

The volume of cone

Given :-

radius (r) = 5 yd

height (h) = 7 yd

Solution :-

The volume of cone

[tex] = \frac{1}{3} \pi {r}^{2} h[/tex]

Substituting the value of 'r' and 'h' in the formula.

[tex] = \frac{1}{3} \times \frac{22}{7} \times {5}^{2} \times 7 \\ = \frac{1}{3} \times 22 \times 5 \times 5 \\ = \frac{550}{3} {yd}^{3} [/tex]

Result :-

[tex] \text {The volume of cone is} \frac{550}{3} {yd}^{3} [/tex].

[tex] \mathcal {BE \: \: BRAINLY} [/tex]