Sagot :
Using the relation between velocity, distance and time, it is found that:
- a) The canoe should be traveling at a rate of 37.5 km/h.
- b) The canoe traveled at a rate of 6.124 km/h.
What is the relation between velocity, distance and time?
Velocity is distance divided by time, hence:
[tex]v = \frac{d}{t}[/tex]
Item a:
1.5 km in 6 hours, with a velocity of vc - 6, in which vc is the velocity of the canoe and 6 km/h is the velocity of the current, so:
[tex]vc - 6 = \frac{1.5}{6}[/tex]
vc - 36 = 1.5
vc = 37.5.
The canoe should be traveling at a rate of 37.5 km/h.
Item b:
Upstream, the velocity is given by vc - 6, as it is against the stream, hence:
[tex]vc - 6 = \frac{1.5}{2t}[/tex]
[tex]t(vc - 6) = \frac{1.5}{2}[/tex]
[tex]t = \frac{1.5}{2vc - 12}[/tex]
Downstream, we have that:
[tex]vc + 6 = \frac{1.5}{2(\frac{1.5}{2vc - 12})}[/tex]
[tex]vc + 6 = \frac{1.5}{vc - 6}[/tex]
[tex]vc^2 - 36 = 1.5[/tex]
[tex]vc = \sqrt{37.5}[/tex]
vc = 6.124.
The canoe traveled at a rate of 6.124 km/h.
More can be learned about the relation between velocity, distance and time at https://brainly.com/question/24316569
#SPJ1