Find the image of the given point
under the given translation.
P(-9, -2)
T(x, y) = (x + 6, y − 4)
P' = ([?], [])


Find The Image Of The Given Point Under The Given Translation P9 2 Tx Y X 6 Y 4 P class=

Sagot :

Answer:   (-3, -6)

Explanation:

The notation [tex]T(x, y) = (x+6, y-4)[/tex] tells us to add 6 to the x coordinate and subtract 4 from the y coordinate.

An equivalent notation would be to write [tex](x,y) \to (x+6, y-4)[/tex]

Point P has the x coordinate of -9. Adding on 6 gets us the new x coordinate of -9+6 = -3

It also has the y coordinate of -2. Subtract off 4 to get -2-4 = -6

So,

[tex](x,y) \to (x+6, y-4)\\\\(-9, -2) \to (-9+6, -2-4)\\\\(-9, -2) \to (-3, -6)[/tex]

Answer:

P' (- 3, - 6 )

Step-by-step explanation:

the translation

(x, y ) → (x + 6, y - 4 )

means add 6 to the x- coordinate and subtract 4 from the y- coordinate , so

P (- 9, - 2 )  → P' (- 9 + 6, - 2 - 4 ) → P' (- 3, - 6 )