Sagot :
Answer:
- [tex]\boxed{\sf{3\sqrt{6}}}[/tex]
Step-by-step explanation:
You need to find the equivalent of 54 by solving and finding the root of it.
GIVEN:
2*3³
3³=27
2*27=54
Change to square root.
[tex]\sf{\sqrt{2*3^3}}[/tex]
Use the exponent rule.
EXPONENT RULE:
[tex]\Longrightarrow: \sf{\:A^{B+C}=A^B\cdot \:A^C}}[/tex]
[tex]\Longrightarrow: \sf{\sqrt{2\cdot \:3^2\cdot \:3}}[/tex]
[tex]\sf{\sqrt{2\cdot \:3^2\cdot \:3}=\sqrt{3^2}\sqrt{2\cdot \:3}}[/tex]
[tex]\Longrightarrow: \sf{\sqrt{3^2}=3}[/tex]
[tex]\sf{3\sqrt{2*\:3}}[/tex]
Then, you multiply the numbers from left to right.
2*3=6
SOLUTIONS:
[tex]\Longrightarrow: \boxed{\sf{3\sqrt{6}}}[/tex]
- Therefore, the equivalent to square root of 54 is "3√6", which is the correct answer.
I hope this helps. Let me know if you have any questions.