Sagot :
Answer:
b. [tex]6\sqrt{3}[/tex]
Step-by-step explanation:
[tex]\frac{6}{x} =\frac{x}{18}[/tex]
[tex]x^{2} =[/tex][tex](6)(18)=108[/tex]
[tex]x=\sqrt{108} =\sqrt{(36)(3)} =6\sqrt{3}[/tex]
Hope this helps
The length of x, the altitude of triangle ABC is [tex]6\sqrt3[/tex]
How to determine the length of x, the altitude of ABC?
From the given figure, we have the following equivalent ratio:
6 : x =x: 18
Express as fraction
6/x = x/18
Cross multiply
[tex]x^2 = 6 * 18[/tex]
Evaluate the product
[tex]x^2 = 108[/tex]
Take the square root of both sides
[tex]x = 6\sqrt3[/tex]
Hence, the length of x, the altitude of ABC is [tex]6\sqrt3[/tex]
Read more about right triangles at:
https://brainly.com/question/2437195
#SPJ2