Find the midpoint of AB A(-1,2) B(0,-14)

Sagot :

Answer:

given ,

two points A ( -1 , 2 ) and B ( 0 , -14 )

  • to find - coordinates of midpoint of A and B

______________________________________

[tex]\fbox\pink{Solution -}[/tex]

let the midpoint be P ( x , y )

using midpoint formula ,

[tex]P(x,y) = ( \frac{ x_{1} + x_{2} }{2} , \frac{ y_{1} + y_{2} }{2} ) \\ \\ P(x,y) = ( \frac{ - 1 + 0}{2} , \frac{2 + ( - 14)}{2} ) \\ \\ (x,y) = ( \frac{ - 1}{2} , \frac{ - 12}{2} ) \\ \\ x = \frac{ - 1}{2} \\ \\ y = \frac{ - 12}{2} => - 6[/tex]

thus ,

the coordinates of the midpoint are

[tex]\red{P( \frac{ - 1}{2} , - 6)} \\ \\ or \\ \\ \red{P( -0.5 , - 6 )} [/tex]

hope helpful :D

Answer:

Step-by-step explanation:

A(-1,2)  x₁ = -1  &  y₁ = 2

B(0 ,-14)   x₂ = 0  & y₂ = -14

[tex]\text{ \sf Midpoint = $\left(\dfrac{x_{1}+x_{2}}{2} ,\dfrac{y_{1}+y_{2}}{2}\right)$ }[/tex]

              [tex]= \left (\dfrac{-1+0}{2} ,\dfrac{2+[-14]}{2} \right) \\\\\\=\left(\dfrac{-1}{2}, \dfrac{-12}{2}\right)\\\\\\=\left( -0.5 , -6 \right)[/tex]