Sagot :
length : [tex]\sf \sqrt{89}[/tex]
Explanation:
use the distance formula : [tex]\sf \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
- using the formula:
[tex]\sf \rightarrow \sf \sf \sqrt{(7--1)^2+(4-9)^2}[/tex]
[tex]\sf \rightarrow \sf \sf \sqrt{(8)^2+(-5)^2}[/tex]
[tex]\sf \rightarrow \sf \sf \sqrt{64+25}[/tex]
[tex]\sf \rightarrow \sf \sf \sqrt{89}[/tex]
Answer:
[tex]\sf \sqrt{89}[/tex]
Step-by-step explanation:
Let A = [tex]\sf (x_1,y_1)[/tex] = (-1, 9)
Let B = [tex]\sf (x_2,y_2)[/tex] = (7, 4)
Distance formula:
[tex]\sf d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Input values into the distance formula and solve for d:
[tex]\sf \implies d=\sqrt{(7-(-1))^2+(4-9)^2}[/tex]
[tex]\sf \implies d=\sqrt{8^2+(-5)^2}[/tex]
[tex]\sf \implies d=\sqrt{64+25}[/tex]
[tex]\sf \implies d=\sqrt{89}[/tex]