A string of a kite is 100 meters long and the inclination of the string with the ground is 60°. Find the height of the kite, assuming that there is no slack in the string.

Sagot :

Answer:

86.5

Step-by-step explanation:

Length of the string forms the hypotenuse AC of right angle triangle ABC.

C is the kite. A is the hand of the person (or, one end of the string). CB is the perpendicular

(height of the kite) from C on the ground. BC is the horizontal.

Sin 60° CB/AC = √3/2

height = 1.73/2 AC = 0.865 * 100 m = 86.5 m