Sagot :
Answer:
C
Step-by-step explanation:
using the sin ratio in the lower right triangle and the exact value
sin45° = [tex]\frac{1}{\sqrt{2} }[/tex] , then
sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{7}{y}[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex] [ y represents the hypotenuse ]
cross- multiplying gives
y = 7[tex]\sqrt{2}[/tex]
------------------------------------------
using the sine ratio in the upper right triangle
sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{y}{x}[/tex] = [tex]\frac{7\sqrt{2} }{x}[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex] ( cross- multiply )
x = 7[tex]\sqrt{2}[/tex] × [tex]\sqrt{2}[/tex] = 7 × 2 = 14