Sagot :
Answer:
[tex]\large\boxed{\sf 2\ feet } [/tex]
Step-by-step explanation:
Here it is given that the volume of a square pyramid is 8ft³ and it has a base length of 2ft. We need to find out the height of the pyramid .
As we know that ,
[tex]\sf\qquad\longrightarrow \bigg\lgroup Volume= Base \ Area \times Height \bigg\rgroup[/tex]
Here since the base is square , we can find the base area as ,
[tex]\sf\qquad\longrightarrow Area_{square}= side^2\\ [/tex]
[tex]\sf\qquad\longrightarrow Area = (2ft)^2\\ [/tex]
[tex]\sf\qquad\longrightarrow Area = 4ft^2 [/tex]
[tex]\red{\bigstar}\quad\underline{\underline{\boldsymbol{ Now\ we\ may \ find\ the\ height\ as\ , }}}[/tex]
[tex]\sf\qquad\longrightarrow Volume = Area \times height \\ [/tex]
[tex]\sf\qquad\longrightarrow 8ft^3=height \times 4ft^2\\[/tex]
[tex]\sf\qquad\longrightarrow height = \dfrac{8ft^3}{4ft^2}\\ [/tex]
[tex]\sf\qquad\longrightarrow \pink{ Height = 2ft }[/tex]
Hence the height of the pyramid is 2ft .