Answer:
a) (1,2)
Step-by-step explanation:
[tex]y < x^2 + 3\\y > x^2 - 4[/tex]
a.
[tex]2 < 1^2 + 3\\2 > 1^2 - 4[/tex]
[tex]2 < 1 + 3\\2 > 1 - 4[/tex]
[tex]2 < 4\\2 > -3[/tex]
Both equations are true
b.
[tex]0 < 4^2 + 3\\0 > 4^2 - 4[/tex]
[tex]0 < 16 + 3\\0 > 16 - 4[/tex]
[tex]0 < 19\\0 > 12[/tex]
Both equations are false
c.
[tex]-4 < -2^2 + 3\\-4 > -2^2 - 4[/tex]
[tex]-4 < 4 + 3\\-4 > 4 - 4[/tex]
[tex]-4 < 7\\-4 > 0[/tex]
Only one equation is true (-4 < 7)
d.
[tex]4 < 0^2 + 3\\4 > 0^2 - 4[/tex]
[tex]4 < 0 + 3\\4 > 0 - 4[/tex]
[tex]4 < 3\\4 > - 4[/tex]
Only one equation is true (4 > -4)
Therefore, our final answer is a) (1,2)
Hope this helps!