Sagot :
Statement:
The base of a triangle is 3m and its height is [tex]10 \frac{1}{2} [/tex] m.
To find out:
The area of the triangle.
Solution:
- Given, base = 3m, height = [tex]10 \frac{1}{2} [/tex]m
- We know,
[tex] \sf \: area \: \: of \: \: a \: \: triangle = \frac{1}{2} \times base \: \times height[/tex]
- Therefore, the area of the triangle
[tex] \sf = (\frac{1}{2} \times 3 \times 10 \frac{1}{2} ) {m}^{2} \\ \sf = ( \frac{1}{2} \times 3 \times \frac{21}{2} ) {m}^{2} \\ = \sf \frac{63}{4} {m}^{2} \\ = \sf 15\frac{3}{4} {m}^{2} [/tex]
Answer:
The area of the triangle is [tex] \sf \: 15 \frac{3}{4} {m}^{2} [/tex]
Hope you could understand.
If you have any query, feel free to ask.
Answer:
Area of triangle = [tex]\boxed{\sf{15\dfrac{3}{4}}}[/tex] m².
Step-by-step explanation:
Here's the required formula to find the area of triangle :
[tex]\longrightarrow{\pmb{\sf{Area_{(\triangle)} = \dfrac{1}{2} \times b \times h}}}[/tex]
- △ = triangle
- b = base
- h = height
Substituting all the given values in the formula to find the area of triangle :
[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{1}{2} \times b \times h}}[/tex]
[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{1}{2} \times 3 \times 10 \dfrac{1}{2}}}[/tex]
[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{1}{2} \times 3 \times \dfrac{20 + 1}{2}}}[/tex]
[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{1}{2} \times 3 \times \dfrac{21}{2}}}[/tex]
[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{1 \times 3 \times 21}{2 \times 2}}}[/tex]
[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{3 \times 21}{2 \times 2}}}[/tex]
[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{63}{4} \: {m}^{2} }}[/tex]
[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = 15\dfrac{3}{4} \: {m}^{2} }}[/tex]
[tex]\star{\underline{\boxed{\sf{\red{Area_{(\triangle)} = 15\dfrac{3}{4} \: {m}^{2}}}}}}[/tex]
Hence, the area of triangle is [tex]\bf{15\dfrac{3}{4}}[/tex] m².
[tex]\rule{300}{2.5}[/tex]