Find the area of the triangle with the given base and height.
b = 3 m and h = 10 1/2 m


Sagot :

Statement:

The base of a triangle is 3m and its height is [tex]10 \frac{1}{2} [/tex] m.

To find out:

The area of the triangle.

Solution:

  • Given, base = 3m, height = [tex]10 \frac{1}{2} [/tex]m
  • We know,

[tex] \sf \: area \: \: of \: \: a \: \: triangle = \frac{1}{2} \times base \: \times height[/tex]

  • Therefore, the area of the triangle

[tex] \sf = (\frac{1}{2} \times 3 \times 10 \frac{1}{2} ) {m}^{2} \\ \sf = ( \frac{1}{2} \times 3 \times \frac{21}{2} ) {m}^{2} \\ = \sf \frac{63}{4} {m}^{2} \\ = \sf 15\frac{3}{4} {m}^{2} [/tex]

Answer:

The area of the triangle is [tex] \sf \: 15 \frac{3}{4} {m}^{2} [/tex]

Hope you could understand.

If you have any query, feel free to ask.

Answer:

Area of triangle = [tex]\boxed{\sf{15\dfrac{3}{4}}}[/tex] m².

Step-by-step explanation:

Here's the required formula to find the area of triangle :

[tex]\longrightarrow{\pmb{\sf{Area_{(\triangle)} = \dfrac{1}{2} \times b \times h}}}[/tex]

  • △ = triangle
  • b = base
  • h = height

Substituting all the given values in the formula to find the area of triangle :

[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{1}{2} \times b \times h}}[/tex]

[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{1}{2} \times 3 \times 10 \dfrac{1}{2}}}[/tex]

[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{1}{2} \times 3 \times \dfrac{20 + 1}{2}}}[/tex]

[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{1}{2} \times 3 \times \dfrac{21}{2}}}[/tex]

[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{1 \times 3 \times 21}{2 \times 2}}}[/tex]

[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{3 \times 21}{2 \times 2}}}[/tex]

[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = \dfrac{63}{4} \: {m}^{2} }}[/tex]

[tex]\twoheadrightarrow{\sf{Area_{(\triangle)} = 15\dfrac{3}{4} \: {m}^{2} }}[/tex]

[tex]\star{\underline{\boxed{\sf{\red{Area_{(\triangle)} = 15\dfrac{3}{4} \: {m}^{2}}}}}}[/tex]

Hence, the area of triangle is [tex]\bf{15\dfrac{3}{4}}[/tex] m².

[tex]\rule{300}{2.5}[/tex]