Sagot :
Let the unknown angle be x
[tex]\\ \sf\longmapsto x+81+17=180[/tex]
[tex]\\ \sf\longmapsto x+98=180[/tex]
[tex]\\ \sf\longmapsto x=180-98[/tex]
[tex]\\ \sf\longmapsto x=82[/tex]
Increasing order:-
[tex]\\ \sf\longmapsto 17<81<82[/tex]
Shortest side has shortest opposite angle and largest side has largest opposite angle.
Increasing order
[tex]\\ \sf\longmapsto AC<AB<BC[/tex]
S O L U T I O N:
Here in given ∆ABC we have been given that measure of angles C & B are 81° and 17° respectively. So first of all we need to find out the angle A. By sum of property of triangle we know that sum of all angles of triangle tends to 180°. Let 'x' be the angle for measure of angle A.
Now,
[tex]:\implies\tt{x + c + b = 180}[/tex]
[tex]:\implies\tt{x + 81 + 17 = 180}[/tex]
[tex]:\implies\tt{x + 98 = 180}[/tex]
[tex]:\implies\tt{x = 180 - 98}[/tex]
[tex]:\implies\tt{x = 85}[/tex]
Now for the increasing order for the given angles can be given by,
[tex]\implies[/tex] 17 < 81 < 82
Now for the increasing order for the given sides of ∆ABC can be given by,
[tex]\implies[/tex] AC < AB < BC
PS: (Shortest side have shortest angle and largest side have largest angle in triangle.)