Answer:
[tex]{ \rm{y = { \boxed{ \blue{- 4}}x + { \boxed{ \blue{5}}}}}}[/tex]
Step-by-step explanation:
Consinder points (0, 5) and (1, 1):
[tex]{ \rm{slope = \frac{(1 - 5)}{(1 - 0)} = \frac{ - 4}{1} }} \\ \\ { \underline{ \rm{ \: m = {}^{ - }4 \: }}}[/tex]
• From general equation of a line:
[tex]{ \tt{y = mx + c}}[/tex]
• Considering point (1, 1)
[tex]{ \rm{1 = ( {}^{ - }4 \times 1) + c }} \\ \\ { \rm{1 = {}^{ - } 4 + c}} \\ \\ { \rm{c = 5}}[/tex]
• Therefore;
[tex]{ \boxed{ \rm{ \: y = {}^{ - }4x + 5 }}}[/tex]