if -12-4(-2x)= 4 then what is x?

Sagot :

Answer:

[tex]\boxed{\boxed{\sf x=2}}[/tex]

Step-by-step explanation:

[tex]\sf -12-4\left(-2x\right)=\:4[/tex]

First, let's remove parentheses:

[tex]\sf -12-4\times -2x=4[/tex]

Simplify, multiply, 4 * -2x = -8x:

[tex]\sf -12-(-8x)=4[/tex]

** Apply rule: - ( -a )= a

[tex]\sf 12+8x=4[/tex]

Now, let's regroup terms

[tex]\sf 8x-12=4[/tex]

Add 12 to both sides:

[tex]\sf -12+8x+12=4+12[/tex]

Simplify, 4 + 12= 16

[tex]\sf 8x=16[/tex]

Divide both sides by 8:

[tex]\sf \cfrac{8x}{8}=\cfrac{16}{8}[/tex]

[tex]\sf x=2[/tex]

________________________

Answer:

[tex]hey \: buddy \: \\ this \: is \: your \: answer[/tex]

Step-by-step explanation:

1)Eliminate redundant parentheses

[tex] - 12 - 4( - 2x) = 4 \\ - 12 - 4( - 2x) = 4[/tex]

2)Multiply the numbers

[tex] - 12 - 4( - 2)x = 4 \\ - 12 + 8x = 4[/tex]

3)Rearrange terms

[tex] - 12 + 8x =4 \\ 8x - 12 = 4[/tex]

4)Simplify the equation

[tex]8x = 12 + 4 \\ 8x = 16 \\ 8x \div 8 = 16 \div 8 \\ [/tex]

5) Divide

[tex]x = 2[/tex]

hope I helped