Find the distance, to the nearest tenth, from T(4,-2) to U(-2,3).

Sagot :

[tex]d = \sqrt{ (x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2} } \\ d = \sqrt{ (4 - (-2))^{2} + (-2 - 3)^{2} } \\ d = \sqrt{ (6)^{2} + (-5)^{2} } \\ d = \sqrt{ 36 + 25} \\ d = \sqrt{ 61 } \\ d = 7.81024... \\ d = 7.8[/tex]

Answer:

7.81

Step-by-step explanation:

Using the formula for finding the distance between two points as shown:

TU = √(y2-y1)²+(x2-x1)²

Given T = (4,-2) and U = (-2,3)

x1 =4, y1 = -2, x2 = -2, y2 = 3

Substituting this values into the formula, we have;

TU = √{3-(-2)}²+(-2-4)²

TU = √(3+2)²+(-2-4)²

TU = √5²+(-6)²

TU = √25+36

TU = √61

TU = 7.81

The distance between the two points is 7.81