Sagot :
Answer:
Slope is [tex]-\frac{1}{2}[/tex]
Step-by-step explanation:
Given:
[tex]f(x)=-3\sqrt{x}[/tex]
Find the derivative using the product rule:
[tex]f'(x)=\frac{d}{dx}(-3)*\sqrt{x}+-3*\frac{d}{dx}\sqrt{x}[/tex]
[tex]f'(x)=-3*\frac{1}{2\sqrt{x}}[/tex]
[tex]f'(x)=\frac{-3}{2\sqrt{x}}[/tex]
Plug in coordinates to find slope at that point:
[tex]f'(9)=\frac{-3}{2\sqrt{9}}=\frac{-3}{2(3)}=\frac{-3}{6}=-\frac{1}{2}[/tex]
Therefore, the slope of the equation at the point (9,-9) is [tex]-\frac{1}{2}[/tex].
Answer:
Step-by-step explanation:
f(x) = -3√x
f'(x) = -1.5/√x
f'(x) = -1.5/√9
f'(x) = -1.5/3
f'(x) = -0.5