Sagot :
Answer:
(x + 2) ( x - 3) (x - 4) =
(x^2 - x - 6) ( x - 4) =
x^3 - x^2 - 6x
-4x^2 + 4x + 24
_________________
x^3 - 5x^2 - 2x + 24
So we have
1x^3 -5x^2 - 2x + 24
Second one
I'm assuming that this is :
4x^7 -2x^4 + 2x^3 -4x - 9
We have 3 sign changes.....so the number of possible positive roots = 3 or 1
To find the number of possible negative roots, replaxe x with -x and we have
4(-x)^7 - 2(-x)^4 + 2(-x)^3 -4(-x) - 9 =
We have 2 sign changes....so the number of possible negative roots = 2 or 0
-4x^7 -2x^4 - 2x^3 + 4x - 9
Answer:
(x + 2) ( x - 3) (x - 4) =
(x^2 - x - 6) ( x - 4) =
x^3 - x^2 - 6x
-4x^2 + 4x + 2
_________________
x^3 - 5x^2 - 2x + 24
So we have
1x^3 -5x^2 - 2x + 24
Second one
I'm assuming that this is :
4x^7 -2x^4 + 2x^3 -4x - 9
We have 3 sign changes.....so the number of possible positive roots = 3 or 1
To find the number of possible negative roots, replaxe x with -x and we have
4(-x)^7 - 2(-x)^4 + 2(-x)^3 -4(-x) - 9 =
We have 2 sign changes....so the number of possible negative roots = 2 or 0
-4x^7 -2x^4 - 2x^3 + 4x - 9