Sagot :
[tex]\\ \sf\longmapsto S_n=\dfrac{a(1-r^n)}{1-r}[/tex]
[tex]\\ \sf\longmapsto S_n=\dfrac{160(1-0.5^6)}{1-0.5}[/tex]
[tex]\\ \sf\longmapsto S_n=\dfrac{160(1-0.015625)}{0.5}[/tex]
[tex]\\ \sf\longmapsto S_n=\dfrac{160(0.984378)}{0.5}[/tex]
[tex]\\ \sf\longmapsto S_n=80(0.984378)[/tex]
[tex]\\ \sf\longmapsto S_n=78.75[/tex]
Answer:
[tex]s _6 = 315[/tex]
Step-by-step explanation:
Here,
a = First term
r ,= common ratio
Now let's use this formula to find the sum of the above geometric series
[tex]s _n = \frac{a(1 - {r}^{n} )}{(1 - r)} \\ \\ s _6 = \frac{160(1 - {0.5}^{6} )}{(1 - 0.5)} \\ \\ s _6 = \frac{160 (1 - 0.015625)}{0.5} \\ \\ s _6 = \frac{157.5}{0.5} \\ \\ s _6 = 315[/tex]
Hope this helps you.
Let me know if you have any other questions:-)