Step-by-step explanation:
ln(x) + ln(x + 25) = 0
ln(x(x + 25)) = 0
ln(x² + 25x) = 0
ln(x² + 25x) = ln(1) , x ≥ 0
x² + 25x = 1
x² + 25x + 625/4 = 1 + 625/4
(x + 25/2)² = 629/4
x + 25/2 = ±√(629/4)
x = ( -25 ±√629)/2
x = (-25 - √629)/2 atau ( -25 + √629)/2
(-25 - √629)/2 ≥ 0 NOT PROVED
(-25 + √629)/2 ≥ 0 PROVED
Solution → x = (-25 + √629)/2