Sagot :
Using an arithmetic sequence, it is found that the smallest possible sum for the series is of 20 736, given by option B.
---------------
- In an arithmetic sequence, the difference of consecutive terms is always the same, called common difference.
- The nth term of an arithmetic sequence is given by:
[tex]a_n = a_1 + (n-1)d[/tex]
- The sum of the first n terms is given by:
[tex]S_n = \frac{n(a_1+a_n)}{2}[/tex]
---------------
- The set of odd integers is an arithmetic sequence with common difference 2, thus [tex]d = 2[/tex].
- 384 terms, thus [tex]n = 384[/tex]
- The last term is: [tex]a_{384} = a_1 + 383(2) = a_1 + 766[/tex]
---------------
The sum of the 384 terms is:
[tex]S_{384} = \frac{384(a_1 + a_1 + 766)}{2} = 192(2a_1 + 766) = 384a_1 + 147072[/tex]
Now, for each option, we have to test if it generates an odd [tex]a_1[/tex].
---------------
Option d: Sum of 1296, thus, [tex]S_{384} = 1296[/tex], solve for [tex]a_1[/tex]
[tex]384a_1 + 147072 = 1296[/tex]
[tex]a_1 = \frac{1296 - 147072}{384}[/tex]
[tex]a_1 = -379.6[/tex]
Not an integer, so not the answer.
---------------
Option c: Test for 10000.
[tex]384a_1 + 147072 = 10000[/tex]
[tex]a_1 = \frac{10000 - 147072}{384}[/tex]
[tex]a_1 = -356.9[/tex]
Not an integer, so not the answer.
---------------
Option b: Test for 20736.
[tex]384a_1 + 147072 = 20736[/tex]
[tex]a_1 = \frac{20736 - 147072}{384}[/tex]
[tex]a_1 = -329[/tex]
Integer an odd, thus, option b is the answer.
A similar problem is given at https://brainly.com/question/16720434