1. Solve x and y for the diagram.


1 Solve X And Y For The Diagram class=

Sagot :

Answer:

B

Step-by-step explanation:

The triangle RUS is similar to RST. 9/sqrt(90)=y/(3+x) and y^2=x^2+81. Solving all this will give x=27 and y=9*sqrt(10)

Value of x is 27 and value of y is [tex]9\sqrt{10}[/tex].

What is angle addition postulate?

The angle addition postulate in geometry states that if we place two or more angles side by side such that they share a common vertex and a common arm between each pair of angles, then the sum of those angles will be equal to the total sum of the resulting angle.

X-value:

<RST = [tex]90^{0}[/tex]

[tex]tan( < RSU)= \frac{\overline R \overline U}{\overline S \overline U}[/tex]

[tex]tan( < RSU) = \frac{3}{9}[/tex]

[tex]< RSU = 18.435^{0}[/tex]

Angle addition postulate:

<RST = <RSU + <TSU

[tex]90^{0} =18.435^{0} + < TSU[/tex]

[tex]< TSU =71.565^{0}[/tex]

[tex]tan( < TSU) = \frac{\overline T \overline U }{\overline S \overline U}[/tex]

[tex]tan(71.565^{0})=\frac{x}{9}[/tex]

[tex]x=27[/tex]

Y-value:

<RST = [tex]90^{0}[/tex]

[tex]tan( < RSU)= \frac{\overline R \overline U}{\overline S \overline U}[/tex]

[tex]tan( < RSU) = \frac{3}{9}[/tex]

[tex]< RSU = 18.435^{0}[/tex]

Angle addition postulate:

<RST = <RSU + <TSU

[tex]90^{0} =18.435^{0} + < TSU[/tex]

[tex]< TSU =71.565^{0}[/tex]

[tex]cos( < TSU) = \frac{\overline S \overline U }{\overline S \overline T}[/tex]

[tex]cos(71.565^{0})=\frac{9}{y}[/tex]

[tex]y=9\sqrt{10}[/tex]

Value of x is 27 and value of y is [tex]9\sqrt{10}[/tex].

Find out more information about angle addition postulate here

brainly.com/question/14957499

#SPJ2