Carmen Martinez
What is the slope of the line that passes through the point 4,4 and 10,7 write your answer in simplest form


Sagot :

  • (4,4)
  • (10,7)

[tex]\boxed{\sf Slope(m)=\dfrac{y_2-y_1}{x_2-x_1}}[/tex]

[tex]\\ \sf\longmapsto m=\dfrac{7-4}{10-4}[/tex]

[tex]\\ \sf\longmapsto m=\dfrac{3}{6}[/tex]

[tex]\\ \sf\longmapsto m=\dfrac{1}{2}[/tex]

[tex]\\ \sf\longmapsto m\approx0.5[/tex]

Answer:

[tex]m=\frac{1}{2}[/tex]

Step-by-step explanation:

The slope of a line, also known as the change in the line or the ([tex]\frac{rise}{run}[/tex]) can be found using the following formula,

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Where ([tex]x_1,y_1[/tex]) and ([tex]x_2,y_2[/tex]) are points on the line. Substitute the given information into the formula and solve for the slope.

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Points on the line: [tex](4,4)\ \ \ (10, 7)[/tex]

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]m=\frac{7-4}{10-4}[/tex]

[tex]m=\frac{3}{6}[/tex]

[tex]m=\frac{1}{2}[/tex]

[tex]m=0.5[/tex]